History of ERA, Eckert-Mauchly, and Remington Rand

By Arthur L. Norberg

Editors Note: The following article by the Director of CBI is based on research he conducted for his soon to be published book. Support from NEH RO-21098-85 and NSF SES-8420481 is gratefully acknowledged. This article, along with two others in this issue of the CBI Newsletter, one reporting on a Unisys-sponsored study of Computer R&D management at Burroughs in the 1950s, and another on the history of medical informatics, represent some of the research being conducted by CBI staff.

Before 1946 digital computer activity was developmental and in a preliminary stage. After 1956, a short decade later, use of digital computers was spreading and a digital computer industry was beginning to flourish. This decade represents a critical period in the development of digital computer technology, often perceived today as unmatched by any previous technological development. Whether this perception is correct or not, and significant evidence exists that other technologies grew as quickly, the computer stimulated technical developments and modes of social behavior that made the computing enterprise into a major phenomenon. Scientific and technical developments just before and during World War II

Continued on page 2

Intel Hosts Archivists Meeting

The fourth annual meeting of high-technology industry and corporate archivists was held on June 22-23, 2000, hosted by the Intel Museum Archives and Collections in Santa Clara, California. CBI archivist Elisabeth Kaplan attended along with archivists, records managers, and curators from Intel, Hewlett-Packard, IBM, the Gap, Motorola, Apple, Disney, and Lucent.

A mix of formal presentations and roundtable-style discussion addressed topics including document imaging systems, strategies for archiving and managing email, best practices and resources for preservation of computer artifacts, the development of a shared information processing taxonomy and authority file, capturing company Web sites, the impact of digital photography on corporate archives, and a proposed standard for long term archiving of digital information.

Rachel Stewart, Intel Collections and Registration Manager, demonstrated Intel's document imaging system. The database contains approximately 130,000 images including photographs, press articles, and company datasheets. Meeting participants described their companies' image databases and discussed descriptive standards, the pros and cons of full text searching and Optical Character Recognition, the importance of metadata, appraisal criteria for documents for imaging, and problems relating to securing copyright of photographic images.

Appraisal and preservation of email is a matter of widespread interest and attendees described current practices at their respective corporate archives. Intel Corporate Records Manager Keith Elliott
Recent Publications

Singh, Simon. The Code Book: The History of Codes and Code-
Early Computer Development at Burroughs and BTM

Late in 1999 the Unisys Corporation provided a grant to the Charles Babbage Institute in support of a research project on the history of the Burroughs Corporation. CBI Associate Director Jeffrey Yost examined aspects of the firm’s strategic decision-making and R&D management in computing during the 1950s. He took the opportunity to compare developments at Burroughs to those at the British Tabulating Machine Company (BTM), analyzing the opportunities and challenges faced by business machine firms in the United States and United Kingdom as they contemplated and later entered the computer industry. In August, Yost will present research from this project in Munich at the International Meeting of the Society for the History of Technology (SHOT).

Materials within the Burroughs Corporate Collection held at the Charles Babbage Institute were critical to this study. The HOBO (Hollerith-Burroughs) Reports on meetings between Burroughs and BTM to form a joint venture in the early 1950s for developing digital computers for data processing applications provided insights into the early perspectives of the two firms on the possibilities and risks in the emerging computer industry. Both firms were cautious about committing scarce resources to computer development at this time, and though they both continued engineering work to produce one-of-a-kind computers for scientific applications in the early 1950s, they soon abandoned the joint venture. Strong demand for both companies’ lines of traditional business machines was a critical factor to the two firms’ respective decisions.

Burroughs and BTM perceived IBM, the worldwide leader in the business machine field, as their primary competitor, fearing the commercial threat of IBM’s traditional office machines as well as the firm’s potential dominance of the computer trade. By mid-decade, their fear of the latter was beginning to be realized as IBM quickly developed into the international leader in computers. In response, both Burroughs and BTM adopted similar acquisition strategies to attempt to catch up.

In 1956 Burroughs acquired the ElectroData Corporation, a Pasadena computer manufacturer that was spun off two years earlier from a division of the Consolidated Electrodynamics Corporation. ElectroData had produced the Datatron 205 computer and was con-

Continued on page 5
Testing Physicians’ Limits

Medical Informatics and Diagnostic Decision-Making

By Philip L. Frana

The idea that medical technologies have promoted physical, emotional, and intellectual “distancing” in the past, that is, a growing divide between caregiver and client, is well-known and popularly accepted. Yet this way of thinking about the introduction of technologies into medical spaces is of relatively recent origin and does not reflect the many other ways that powerful medical technologies, particularly medical-computer applications, have been evaluated in the past. Medical informatics, defined today as “the application of computers, communications, information science, engineering, and technology to medical care, medical education, and medical research,” is one useful and illustrative case in point. In the late 1950s and throughout most of the 1960s physicians, medical educators, and researchers embraced the movement toward the exploitation of computers to collect and organize burgeoning stores of medical knowledge and provide significant decision-support in their interactions with patients and students. Skepticism toward certain applications of medical informatics as agents of “distance” did not emerge until the late 1960s.

Joel Howell in Technology in the Hospital (1995) notes that medical machines are today implicated as the source of all sorts of “evils,” including the devaluation of patient narratives of their own afflictions, the privileging of machine-generated medical data, and the transformation of the primary-care physician into a remote research scientist. Much less well understood is the role and evaluation of computers as medical instruments of change in the middle of the century. Here, the development of so-called “diagnostic-assistance programs” is considered as one particular area illustrating different views of medical technologies.

Although the term “medical informatics” does not appear in published sources until the mid-1970s,
symptoms, signs, or laboratory results might fit into previously established disease categories. The computer program could be used over and over as new information presented itself, establishing or ranking diagnoses by serial observation. Warner found that by applying Bayesian conditional-probability algorithms to a symptom-disease matrix of thirty-five coronary conditions, the Burroughs machine could perform just as well as any cardiologist. Other enthusiastic early adopters of Bayesian estimation included John Overall and Clyde Williams for thyroid disorders, Charles Nugent for Cushings disease, Gwilym S. Lodwick for primary bone tumors, and Martin Lipkin for hematological diseases.

The celebration of computer-assisted diagnosis reached its highest pitch soon after the widespread application of Bayes work. Dr. Jordan Baruch of Massachusetts-based Buit Beranek and Newman Inc., for instance, lauded the technology as "literally more intelligent and more capable than any group of humans." Developers of programs incorporating Bayesian statistical methods in the 1960s celebrated computer diagnostics as tools for making medicine cost effective. Many medical educators hoped that the programs would ease the burden of medical students memorizing a crushing load of arcane medical information. Computer-assisted tools also held out the possibility of diagnosis by technician. And everywhere in the early debates over the merits of digital diagnosis one could hear physicians heralding the dawn of truly "logical" medical diagnosis, medicine as the Ancients had intended.

Confirmation of Bayes estimation as a worthwhile and valid technique for medical diagnosis came from an unusual Public Health Service-National Bureau of Standards collaboration. Homer Warner had been introduced to the possibilities of Bayes' theorem by USPHS officer Lee B. Lusted who, with National Bureau of Standards (NBS) dentist and theoretical physicist Robert S. Ledley, quickly became a giant in the field of medical decision-making. Lusted and Ledley shared similar interests in digital diagnosis, and together hoped to realize the potential of the NBS's general-purpose SEAC computer. Ledley's first program automatically diagnosed diseases of the tongue, but more importantly, Ledley and Lusted began carefully scrutinizing the "reasoning foundations" of the "symptom-disease complex." Out of this, both endorsed the validity of probabilistic diagnostic methods like Bayes estimation, arguing that they captured the essential variability of disease better than printed tables. Ledley and Lusted also discovered that enormous computational power was necessary to really get at the total number of conceivable symptom-disease combinations they wanted to evaluate. For example, just one specialized branch of medicine with hundred defined diagnoses and four hundred associated symptoms could generate 2^100 possible combinations.

While the power and speed of computers grew rapidly to meet this challenge, by the late 1960s many medical researchers and commentators began issuing distressed assessments of the present and future for diagnostic assistance programs. Though computer diagnosis had always been controversial in some respects, especially in terms of the new demands it put on physicians to learn to use the new technology, by the late 1960s criticisms of diagnostic-assistance programs began to mount. Critics disparaged digital diagnosis programs as cost-containment measures. Moreover, as "logical" as computers seemed to be, even "imperfect" humans could out think them.

For example, INTERNIST-1/CADUCEUS, one of the most promising digital diagnostic programs of the late 1970s and 1980s, got most of its diagnoses right. But it was maddeningly wrong just often enough to make it

Burroughs and BMT...

Continued from page 3

pleting development of the Dataatron 220 at the time of the acquisition.

Throughout the decade following World War II the Burroughs Corporation had been very successful in obtaining Federal Government contracts to produce computing and other electronic equipment. Despite the technically advanced government sponsored research being conducted at the Burroughs Paoli Research Center near Philadelphia, including computer contracts working on the SAGE air defense and the ATLAS missile guidance systems, there was little coordination between this center and the ElectroData computer development laboratory in Pasadena. Records in CBI's ElectroData and Paoli Division collections indicate the missed opportunities for collaborative R&D efforts between the centers, and in some cases, the recognition of these unfulfilled possibilities by the firm's engineers and managers during the 1950s.

At BTM, ongoing efforts to combine with Powers-Samas, their longtime British office machine competitor, culminated in 1958 with the merger of the two firms to form International Computers and Tabulators Ltd. (ICT). As at Burroughs, integration of the two firms was a slow and difficult process, and much time was lost as IBM was strengthening its international leadership in the industry.

The cases of BTM and Burroughs in the 1950s demonstrate the complexity of coordinating international research and development joint ventures, the struggle to create advanced products in an emerging technology while preserving existing revenue streams, and the cultural and technical hurdles involved with assimilating R&D resources from acquisitions in a rapidly changing technologically based industry. Furthermore, Burroughs' inability to quickly gain a large market share in the computing trade relative to IBM, despite the fact that both firms received hundreds of millions of dollars in government computer contracts during the 1950s, highlights the significance of organizational capabilities and the greater relative importance of endogenous versus exogenous factors to a firm's rapid growth in an emerging high-tech field.

Jeffrey R. Yost
In contrast to EMCC, IBM, and others, there was no single objective governing ERA activities in the company’s formative period of 1946 to 1951. Indeed, among the large number of founders, several objectives were being promoted by small groups of people. Even though the company was reminded from time to time that their principal task was navy business, often developments for the navy were examined with a critical eye to commercialization. Burke has gone so far as to conclude that the tug of war between company personnel and navy overseers was the prime contribution to ERA’s early downfall. Contrasting ERA with EMCC, which suffered a similar early downfall, reveals that navy pressure was only part of the problem.

To understand ERA, we must make a careful examination of how several conceptual relationships played out in the company. The study examines relationships between science and technology, research and development, invention and innovation, and military and civilian outlooks. While ERA did not begin as a computer company in the same sense as say EMCC did, the desire to be one lurked in the background and was ultimately achieved, both because and in spite of the navy. To appreciate these relationships and to understand how ERA moved from data processing to computer design, we need to examine in detail technical developments within ERA, and their contributions to and borrowings from the rest of the enterprise. At first sight, it may not appear that ERA was a pioneer in this industry—a number of contemporaries, among them J. P. Eckert, dismissed ERA, and several historians have seen it merely as a captive of the navy. ERA, however, deserves to be ranked with EMCC, Remington Rand, IBM, Hewlett-Packard, and Microsoft as an important early element in the great success of the computing enterprise in this last half century.

Exploring the successes and failures of the ERA and EMCC divisions, as well as their interaction with the Norwalk laboratory of Remington Rand, helps us to understand the issues. Comparing them with each other and with other activities has not been done previously.

Within Remington Rand, ERA and EMCC operated as separate divisions until the purchase of Remington Rand by Sperry Corporation. During this ostensibly free period, EMCC concentrated on commercial trade; ERA continued to serve the military market, though not exclusively. Sperry created the Univac Division and began a formalization of the activities of the two former divisions into civilian and military product producers. However, this did not happen smoothly within the new company. Old wounds were still raw, and infighting resulted in decisions about management personnel and reporting lines that were unsatisfactory to many. Groups formed in lesser formal age felt threatened by the changes. Moreover, these men had ideas for new products that were not acceptable to the new management, and the groups began to dissolve. New companies were organized and the complexion of the industry began to change substantially. Indeed, the industry as we know it today began to emerge.

Of course, not all of the reasons for this new emergence are to be found within the machinations of the Sperry Rand Company. Other companies had not been sitting on their hands. IBM’s overall objective was quite similar to that of EMCC: to obtain commercial customers for the new machinery. IBM followed an R&D strategy that was analogous to that of ERA and EMCC.

Tracing the influence of these various firms in the industry is not straightforward. The early period was very volatile. Information was passed readily from group to group. Government classification of projects meant that government personnel could decide to circulate or withhold documents as they chose. To their credit, they did not withhold the information, but instead circulated it broadly. This circulation and the influence of the documents on the thinking of others are difficult to measure, because it is difficult to know who saw what when. And we still have that most nagging of historical questions concerning when or whether a report received had an effect on someone else’s work. This traditional puzzle for the historian is much more difficult here because of the rapid rate of growth of and large number
of players in the computer enterprise.

Something clearly magnificent transpired in the first decade of this industry. No stored-program computer existed before it began; many examples existed after. No companies were involved in designing and manufacturing electronic digital computers before the decade began; several around the world engaged in the activity by the end of the decade. Applications were difficult to design in the early period because of small storage, but perhaps more important the companies did not think in the early years that this needed to be done. By 1958, this view had changed; we had entered the period when companies formed to independently fill this need. Work on component design, particularly semiconductors, began to contribute to technical aspects of computer design. And perhaps most significant of all, an active market existed in 1956, where only a decade earlier the market existed only in the minds of a few visionaries.

Medical Informatics

Continued from page 5

impractical for use in the “real world.”

Digital assistance also freed clinicians from few of the routine decisions it was supposed to. Physicians on rounds showed reluctance in applying programs like CADUCEUS simply because they absorbed precious moments with tedious data-entry. Finally, diagnostic-assistance programs tested physicians' limits by distancing them from their patient’s afflictions, reducing them to a series of weighted variables.

Crucially, physicians limited expectations for diagnostic-assistance programs fueled their reconfiguration as limited applications. That is to say, physicians’ restrained desires led to more constrained uses. In this way, ironically, medicine derived unparalleled benefits from the technology. Physicians embraced computers as virtual Solomon’s houses of diagnostic information, if not as independent organizers of medical content. Pharmacists accepted narrowly conceived assistance programs as helpmates against antibiotic resistance and incompatible prescriptions. The computer’s ability to discern patterns in telemetry data proved another successful targeted application of digital diagnostic-assistance (increasingly softened by use of the moniker “decision support”). No hospital cardiac care ward today is without sophisticated monitoring equipment descended from early electrocardiographic equipment which did “point recognition” and established “ventricular gradients.” Yet these telemetry machines are still operated by human technicians.

Clinicians and medical researchers since the 1970s have found ways to make digital diagnosis useful without becoming swallowed up by its most dehumanizing aspects. From its expectant infancy as a solution to social and professional needs to its awkward adolescence as a social and technological problem, diagnostic-assistance programs have charted an ambiguous and ultimately useful middle path between facilitation and consternation.

Elisabeth Kaplan
Fifty Years Ago

Initially known as the National Bureau of Standards Interim Computer, the Standards Eastern Automatic Computer (SEAC) was intended to fill the need for computing power at the NBS's National Applied Mathematics Laboratories until either Princeton's Institute for Advanced Study (IAS) machine or UNIVAC was in operation. The project to build this computer began in 1948 and was partially subsidized by the United States Air Force. SEAC was demonstrated at the NBS in April 1950 and by May it was fully operational. It was the first practical stored program computer to be put into service in the United States. SEAC remained in service, with continual modifications, until 1964, having performed 70,254 hours of operation.

30 Years Ago

In 1970 Hewlett-Packard Company announced the HP 2114B minicomputer, designed for data communication, instrumentation, and education systems. Hewlett-Packard billed the 2114B as "ideal for use in either general-purpose computer systems or in specific systems applications such as process control, automatic checkout, data acquisition and data communication." The 2114B sold for approximately $6000-$7000 and featured 16-bit word size, a 4,096 word memory, a 2.0 microsecond full cycle time, and 7 plug-in I/O channels.

Lynn Leitte

Return Service Requested

Charles Babcock Institute

222 21st Ave. South
Minneapolis, MN 55405, U.S.A.

Paid
U.S. Postage

Charges Babcock Institute

NEWSELTTER