Y 1
Yamamoto, Chogoro

Satsumaya abacus [soroban]

Year: ca. 1950
Place: Tokyo
Publisher: Satsumaya Abacus Co.
Edition: unknown
Language: English
Binding: original paper wrappers
Pagination: pp. 16
Size: 182x128 mm

This is a small pamphlet that teaches the basic operations of a soroban (Japanese abacus).

Illustrations available:
- Title page

Y 2
Yano, Tsuneta (1866–1951)

Yano’s tables of calculation

Year: 1952
Place: n/p
Publisher: Tsuneta Yano Memorial Society

Edition: 1st
Language: English
Figures: photoengraved portrait frontispiece; 1 photoengraved plate
Binding: original cloth boards; gilt-stamped cover and spine
Pagination: pp. [2], III, [1], IV–VII, 162, [1]
Size: 182x126 mm

Tsuneta Yano was the president of the Daiichi Mutual Life Insurance Company. He had a life-long interest in calculation. He began to relinquish business responsibilities in 1938 and to spend time devising sets of tables that he thought would be useful to the general public. This volume contains tables for multiplication, division, reciprocals, powers, logs, antilogs, cologarithms (logarithms of reciprocals of numbers), etc. Perhaps the most useful tables are the ones detailing the conversions between British, American and Japanese measures. These tables were published by his son, Ichiro, as a memorial to his father, but exactly why they were produced in English rather than in Japanese is not explained.

This volume is a presentation copy from the editor to Prof. S. S. Huebner.

Illustrations available:
- Title page
- Portrait of Yano
- Table of conversions for measures
This is a study of the arithmetic used from the fall of Rome to the beginning of the Renaissance. Yeldham begins with a quick survey of the number systems of Babylon, Egypt and Greece and then turns to the use of the table abacus. She illustrates a pair of counters from the British Museum engraved to show the use of Bede’s finger numerals. In describing the methods used on an abacus, she takes her examples from ancient manuscripts. The second half of the work is concerned with the introduction into Europe of Hindu-Arabic numerals, or algorism. After a discussion of the Algorismus Vulgaris of Sacrobosco and the Carmen de Algorismo, she reproduces the earliest extant English version of the Algorismus at least as far as the discussion on division. The last two chapters deal with various documents illustrating the transition between the use of Roman numerals and algorism and with the English language arithmetic manuscripts produced before printing became widespread.

The frontispiece is the often-used illustration of both counters and algorism from Gregor Reisch’s Margarita Philosophica. A leaf is inserted with the inscription *with author’s compliments Feb. 1927*.

Illustrations available:
- Title page
- Finger numeral counters
Sometime within the ten years preceding this publication, Yeldham had earned her Ph.D., but there is no indication as to which university she attended.

The work is a natural continuation of her earlier book on arithmetic in the Middle Ages (see entry for Yeldham, Florence Annie; The story of reckoning in the middle ages). The natural speculation is that this was part of the work that she used as her thesis, but again there is nothing to indicate the source. The vast majority of this work deals with the period from the sixteenth to the nineteenth century, with only a very short final chapter commenting on the twentieth. She considers famous textbooks and provides an explanation of the more difficult passages in each (e.g., the method of galley division), the various rules of arithmetic, obscure or obsolete terminology and how the various authors relate to each other and to the general era of their publication. The major authors considered are Tonstall (Tunstall), Recorde, Hylles, Wingate, Oughtred, Jager, Cocker, Ward, Malcolm, Vyse, Chappell, Bonnycastle, DeMorgan and Sang.

The frontispiece shows the title page of an early English arithmetic that illustrates a man with a table abacus.

Illustrations available:
- Title page
- Frontispiece

Y 5

Young, A. J.

An introduction to process control system design

Year: 1955
Place: London
Publisher: Longmans, Green and Co.
Edition: 1st
Language: English
Binding: original cloth boards; with dust jacket
Collation: π B–2A B
Size: 215x133 mm

Young was, at the time of publication, president of the Society of Instrument Technology in Britain. He was head of the Central Instrument Laboratory of Imperial Chemical Industries.

This text is an overview of the difficulties and benefits of the use of automatic control in a large plant. It was
published at a time when the developing computer industry was still not able to provide the reliability needed, at reasonable cost, for a computer to be part of the control loop. Young has two brief mentions of the computer, but he dismisses it because of this reliability factor. It would be less than five years before computers were first used to control large manufacturing facilities.

Illustrations available:
Title page

Young, John Radford (1799–1885)

An elementary essay on the computation of logarithms; intended as a supplement to the usual books on algebra

Year: 1830
Place: London
Publisher: John Souter
Edition: 1st
Language: English
Binding: modern calf-backed marbled boards
Pagination: pp. iv, 69, [3]
Collation: πB–G⁶
Size: 176x98 mm

John Young was a self-educated mathematician from a humble London background. In 1823, he published a text on algebra dedicated to O. G. Gregory, with whom he had studied. In 1833, Young was appointed professor of mathematics at Belfast College, but he was refused reappointment on religious grounds in 1849.

This slim volume is a supplement to Young’s earlier algebra text of 1823. It assumes that logarithms are well known and proceeds to describe three different ways of computing a table: computing logs for prime numbers, computing them via difference methods and the direct computation of individual logarithms.

This volume is interesting in that it illustrates the state of table-making science at the time that Charles Babbage was producing his tables of logarithms and his Difference Engine and was about to start on his Analytical Engine.

Illustrations available:
Title page

From Kersseboom; Proeven van politte rekenkunde, 1748